Norms of Circulant and Semicirculant Matrices with Horadam’s Numbers

نویسندگان

  • E. Gökçen Alptekin
  • Toufik Mansour
  • Naim Tuglu
چکیده

In this paper, we obtain the spectral norm and eigenvalues of circulant matrices with Horadam’s numbers. Furthermore, we define the semicirculant matrix with these numbers and give the Euclidean norm of this matrix. 2000 Mathematics Subject Classification: 11B39; 15A36; 15A60; 15A18.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral norms of circulant-type matrices involving some well-known numbers

In this paper, we investigate spectral norms for circulant-type matrices, including circulant, skewcirculant and g-circulant matrices. The entries are product of binomial coefficients with Fibonacci numbers and Lucas numbers, respectively. We obtain identity estimations for these spectral norms. Employing these approaches, we list some numerical tests to verify our results.

متن کامل

Some Bounds for the Norms of Circulant Matrices with the k-Jacobsthal and k-Jacobsthal Lucas Numbers

Abstract In this paper we investigate upper and lower bounds of the norms of the circulant matrices whose elements are k−Jacobsthal numbers and k−Jacobsthal Lucas numbers.

متن کامل

On the Norms of Circulant Matrices with the (k,h)-Fibonacci and (k,h)-Lucas Numbers

In this paper, we give upper and lower bounds for the spectral norms of circulant matrices A n = Circ(F n−1) and B n = Circ(L (k,h) n and L (k,h) n are the (k, h)-Fibonacci and (k, h)-Lucas numbers, then we obtain some bounds for the spectral norms of Kronecker and Hadamard products of these matrices.

متن کامل

TR-2013015: Estimating the Norms of Random Circulant and Toeplitz Matrices and Their Inverses

We estimate the norms of standard Gaussian random Toeplitz and circulant matrices and their inverses, mostly by means of combining some basic techniques of linear algebra. In the case of circulant matrices we obtain sharp probabilistic estimates, which show that these matrices are expected to be very well conditioned. Our probabilistic estimates for the norms of standard Gaussian random Toeplit...

متن کامل

The spectral norms of geometric circulant matrices with the generalized k-Horadam numbers

In this paper, we use the algebra methods, the properties of the r-circulant matrix and the geometric circulant matrix to study the upper and lower bound estimate problems for the spectral norms of a geometric circulant matrix involving the generalized k-Horadam numbers, and we obtain some sharp estimations for them. We can also give a new estimation for the norms of a r-circulant matrix involv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007